
Data Structures and Abstractions

Searching & Sorting
& STL Sort

Lecture 10

• When testing searching and merging algorithms,
it is important to check boundary and unusual
conditions:

• In other words test for containers with [1]:
– 0 elements;
– 1 element;
– 2 elements;
– 3 elements;
– a large number of odd elements;
– a large number of even elements;
– The Cyclomatic Complexity of your algorithm can be

used to guide your test cases. [2]

Testing

2

• Linear searches involve starting at the beginning,
then checking each element in the container until
we find the right one.

• In other words, a brute force approach.
• This is sure but slow: its average complexity is

O(n). [1]
• This code is usually put inside a Find() or Search()

routine.
• It is the only search available to linked lists and

unsorted arrays, and is therefore the search used
for the STL vector and list.

Linear Search

3

Boolean Find (DataClass target, Address targetPosition) [code in
textbook]

Boolean found

Set found to false

Start at the beginning of the container

WHILE not at the end of container AND found is false

IF the current element is the target

targetPosition = Address (index of the current
element}

found = true

ENDIF

set current to next element

ENDWHILE

Return found

END FIND

Linear Search Algorithm

4

Binary Search
• A faster search than linear search exists for sorted, direct access

containers such as sets and maps.
• This is binary search, where the search space is halved after each

guess.
• The “Guess a number between 1 and 100” game played by children

is a binary search.
• It is a divide and conquer strategy.
• The order of complexity is O(log(n) + 1) for the number of

iterations.
• See diagrams explaining this in the textbook – section on binary

search, Chapter on Searching and Sorting Algorithms.
– Go through the worked examples in this chapter found in the section on

Asymptotic Notation: Big-O Notation. [1]

5

Iterative Binary Search Algorithm
• Find (DataClass target, integer targetIndex) [code in textbook, data must

be sorted]

• integer bottomIndex, middleIndex, topIndex [1]

• boolean targetFound

• targetFound = false

• bottomIndex = 0

• topIndex = arraySize-1

• WHILE topIndex >= bottomIndex AND targetFound = false

• middleIndex = (topIndex + bottomIndex)/2

• IF target = value at middleIndex

• targetIndex = middleIndex

• targetFound = true

• ELSEIF target < value at middleIndex

• topIndex = middleIndex-1 // no point searching above

• ELSEIF target > value at middleIndex

• bottomIndex = middleIndex+1 // no point searching below

• ENDIF

• ENDWHILE

• END Find

6

Iteration versus Recursion

• Anything that can be done with recursion can be done with iteration.

• Anything that can be done with iteration can be done with recursion.

• Advantages of Iteration:

– Often easier to understand

– Uses less memory

• Advantages of Recursion: [1]

– Sometimes much easier to understand

– Often simpler to code

– Reduces code complexity

7

Recursive Binary Search Algorithm [1]

• Find (DataClass target, integer targetIndex) : boolean

• Set targetIndex to -1

• return Find (target, 0, arraySize-1, targetIndex)

• End Find

• Find (DataClass target, integer bottomIndex, integer topIndex,

• integer targetIndex) : boolean // the overloaded version

• Boolean found

• Set found to false

• Integer middleIndex

• middleIndex = (topIndex + bottomIndex)/2

• IF target = array[middleIndex]

• targetIndex = middleIndex

• found = true // line A

• ELSEIF topIndex <= bottomIndex

• found = false

• ELSEIF target < array[middleIndex]

• Find (target, bottomIndex, middleIndex-1, targetIndex)//Line B

• ELSEIF target > array[middleIndex]

• Find (target, middleIndex+1, topIndex, targetIndex)

• ENDIF

• Return found [2] // Line C

• End Find

8

Merging Sorted Containers

• When we looked at Sets in a previous lecture, we looked at algorithms for
subset, difference, union and intersection.

• They all operate in O(n) time.

• They were all very similar.

• This is because they were all variations of the standard merge algorithm
for sorted containers.

• The merge algorithm is also important for merge sort which is the best
(only) sort to use for very large amounts of data stored on disk.

• Note that the STL <algorithm> class contains a merge algorithm that
works on sorted containers.

9

• Merge(container1, container2, newContainer) [1]

• datum1 = first element in container1

• datum2 = first element in container2

• WHILE there are elements in both container1 and container2

• IF datum1 < datum2

• Put datum1 in newContainer

• datum1 = next element in container1

• ELSEIF datum2 < datum1

• Put datum2 in newContainer

• datum2 = next element in container2

• ELSE

• Put datum1 in newContainer

• Put datum2 in newContainer // duplicates are being kept

• datum1 = next element in container1

• datum2 = next element in container2

• ENDIF

• ENDWHILE

• WHILE there are elements in container1

• Put datum1 in newContainer

• datum1 = next element in container1

• ENDWHILE

• WHILE there are elements in container2

• Put datum2 in newContainer

• datum2 = next element in container2

• ENDWHILE

• End Merge

10

Categorisation of Sorting Algorithms

• Categorising sorting algorithms allows decisions to be
made on the best sort to use in a particular situation.

• Algorithms are categorised based on:
– what is actually moved (direct or indirect);
– where the data is stored during the process (internal or

external);
– whether prior order is maintained (stable vs unstable);
– how the sort progresses;
– how many comparisons are made on average and in the

worst case;
– how many moves are made on average and in the worst

case.

11

Direct vs Indirect
• Direct sorting involves moving the elements themselves.

For example when sorting an array

It becomes

• Indirect sorting involves moving objects that designate the elements (also called address table
sorting). This is particularly common where the actual data is stored on disk or in a database.
For example, if sorting an array:

we do not sort the data, but instead set up an array of the addresses:

and sort them based on the data to which they refer:

12

50 20 10 60 10

10 20 50 60

50 20 10 60 10

10

0 1 2 3 4

2 4 1 0 3

Internal vs External

• Internal: the data is stored in RAM.

• External: the data is stored on secondary
storage (hard drive, tape, floppy disk etc).

• There are two external sorts: natural merge
and polyphase. The latter is very complicated
and it is usually used for large files. [1]
– We wouldn’t be looking at polyphase sort in this

unit – read out of interest.

13

Stable vs Unstable

• Stable sorts preserve the prior order of
elements where the new order has equal keys.

• For example, if you have sorted on name and
then sort on address, people with the same
address would still be sorted on name.

• On the whole stable sorts are slower.

14

Type of Progression

• Insertion: examine one element at a time and insert it into the structure in
the proper order relative to all previously processed elements.

• Exchange: as long as there are still elements out of order, select two
elements and exchange them if they are in the wrong order.

• Selection: as long as there are elements to be processed, find the next
largest (or smallest) element and set it aside.

• Enumeration: each element is compared to all others and placed
accordingly. [1]

• Special Purpose: a sort implemented for a particular one-off situation.

15

Number of Comparisons
Type Name Average O Worst Case O

Insertion Straight Insertion n2 n2

Binary Insertion n log n n log n

Shell* n1.25 -

Exchange Bubble n2 n2

Shaker n2 n2

Quicksort n log n n2

Merge n log n n log n

Selection Straight Selection n2 n2

Heap n log n n log n

16

* Based on empirical evidence only.

Number of Comparisons [1]
Type Name Average O Worst Case O

Insertion Straight Insertion n2 n2

Binary Insertion n log n n log n

Shell* n1.25 -

Exchange Bubble n2 n2

Shaker n2 n2

Quicksort n log n n2

Merge n log n n log n

Selection Straight Selection n2 n2

Heap n log n n log n

17

* Based on empirical evidence.

Number of Moves

18

Type Name Average O Worst Case O

Insertion Straight Insertion n2 n2

Binary Insertion n2 n2

Shell* n1.25 -

Exchange Bubble n2 n2

Shaker n2 n2

Quicksort n log n n2

Merge n log n n2

Selection Straight Selection n log n n2

Heap n log n n log n

* Based on empirical evidence only as there doesn’t appear to be
algorithm analysis for this algorithm

Number of Moves

19

Type Name Average O Worst Case O

Insertion Straight Insertion n2 n2

Binary Insertion n2 n2

Shell* n1.25 -

Exchange Bubble n2 n2

Shaker n2 n2

Quicksort n log n n2

Merge n log n n2

Selection Straight Selection n log n n2

Heap n log n n log n

* Based on empirical evidence only

Algorithm Choice
• Looking at the tables, ‘clearly’ heap sort is the fastest, followed by mergesort

and quicksort.

• So why is quicksort the algorithm used by spreadsheets, the STL, in C etc??

• There can be several reasons:
– The first is that quicksort is an internal sort and the other two are external sorts.

Therefore it requires less I/O, but there are versions of merge sort which try to cut
down on I/O.

– Obtaining and releasing memory is time consuming.

– The next reason hidden in the use of big O notation. When running quicksort,
merge and heap sort on my PC, I found that although they are all O(n log n) for
random data, quicksort ran twice as fast as heap sort and almost 5 times faster
than merge sort!

– There are lots of very complicated ways to optimise quicksort.

– On the flip side, merge sort is very suited to parallel programming.

20

Readings

• Textbook Chapter Searching and Sorting
Algorithms.

• Reference book, Introduction to Algorithms.
For further study, see part of the book called
Sorting and Order Statistics. It contains a
number of chapters on sorting.

21

Bubble sort,
Merge sort,

Heap sort and
Quicksort

Data Structures and Abstractions

Bubble Sort

• Bubble sort is the most commonly coded of the
simple sorts.

• It is a stable exchange sort.

• Whilst not particularly fast—O(n2)—it is very
simple to code and easy to understand.

• For anything less than 1000 items, bubble sort is
fine.

• Its name derives from the fact that large numbers
‘bubble’ to the ‘top’ of the container.

Bubble Sort Algorithm
• ArrayBubbleSort

• integer target, lastSwap

• boolean swapDone, sortDone

• Initialise lastSwap to 0

• Initialise sortDone to false

• IF array size > 1

• target = size-1

• WHILE not sortDone

• swapDone = false

• FOR index = 0 to target-1

• IF element[index] > element[index+1]

• Swap them

• lastSwap = index

• swapDone = true

• ENDIF

• ENDFOR

• sortDone = not swapDone

• target = lastSwap

• ENDWHILE

• ENDIF

•

• END BubbleSort

Merge Sort

• Merge sort uses the divide and conquer
algorithmic strategy.

• It has complexity O(nlog n) for all cases.

• It is a simple merge to implement.

• It is most easily implemented using recursion.

• It is an efficient sort to implement for a large
amount of data on disk (that does not fit into
RAM).

25 of 234

Merge Sort Algorithm

• MergeSort

• IF there are more than two elements in the container

• Divide the container into two

• Merge Sort the first part // call again

• Merge Sort the second part // call again

• Merge the two sorted parts into a temp file or

array

• Put merged temp file/array back into array being

sorted

• ELSE IF two elements in the container

• Swap them if necessary

• ENDIF

• END MergeSort

26 of 234

The Actual Heap
• Clearly such a structure can be used to sort

data.

• However, in actual fact, the data structure
used is simply another array.

• This is because we end up doing a lot of data
swapping in a heap, which is difficult to code
in an actual tree.

• Also it turns out that in an array, the parent-
child relationships is mathematical, making
swaps particularly easy.

27 of 234

Abstract View vs Actual View

28 of 234

4

5

98

6

7

978654

Heap Sort Algorithm

29 of 234

• Heap sort is an unstable selection sort.

• It utilises a greedy algorithmic technique.

• It has complexity O(nlog n).

• But is more complicated to code than a merge sort.

Heap Sort Algorithm

• HeapSort

• FOR each member of the array

• Place it at the bottom end of the heap

• WHILE it is smaller than the parent

• Exchange it with the parent

• ENDWHILE

• ENDFOR

• index = 0

• WHILE the heap is not empty

• Put the top of the heap at index in the array

• Increment index

• Delete the top of the heap and rearrange

• ENDWHILE

• END HeapSort

30 of 234

Put on
the heap

Take off
the heap

Quicksort

• Quicksort: the name says it all!

• It is the fastest algorithm that uses no extra
space.

• It can also be optimised to be very, very fast
indeed.

• It is O(nlog n) on average and O(n2) in the
worst case.

• But it is difficult to code and difficult to
understand unless you actually try it.

31 of 234

Quicksort Algorithm

• QuickSort

• Quicksort (0, size, array);

• END QuickSort

• QuickSort (low, high, array)

• IF low < high AND high-low >= 2

• integer pivotIndex

• Split (low, high, array, pivotIndex) // sort is
done here

• QuickSort (low, pivotIndex-1, array)

• QuickSort (pivotIndex+1, high, array)

• ELSEIF high-low == 2

• If array[high] < array[low]

• Swap them

• ENDIF

• ENDIF

• END QuickSort

32 of 234

• Split (low, high, array, pivotIndex)

• pvalue = array[low]

• integer index1 = low

• integer index2 = high

• WHILE (index1 < index2)

• WHILE (array[index1] <= pvalue && index1 < index2)

• index1++;

• ENDWHILE

• WHILE (array[index2] > pvalue && index2 > index1)

• index2--;

• ENDWHILE

• IF (index1 < index2)

• Swap values at index1 and index2

• ENDIF

• ENDWHILE

• Set pivotIndex to index2-1

• Swap values at low and pivotIndex

• End Split

33 of 234

Look for a
value higher

than the
pivot value

Look for a value
lower than the

pivot value

If found,
swap them

Now put the
pivot value
between

them

Readings

• Textbook Chapter Searching and sorting Algorithms. Diagrams
in the textbook also explain step by step.

• Reference book, Introduction to Algorithms. For further study,
see part of the book called Sorting and Order Statistics. It
contains a number of chapters on sorting.

Data Structures and Abstractions

Empirical
Comparisons,
and the STL

Sorts

Empirical Comparison 1[1]

Random Numbers

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10

n (x 1000)

s
e
c
o

n
d

s

Bubble

Quick

Merge

Heap

Empirical Comparison 2
Random Numbers

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1 2 3 4 5 6 7 8 9 10

n (x 1000)

s
e
c
o

n
d

s Quick

Merge

Heap

Empirical Comparison 3
Ordered Numbers

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8 9 10

n (x 1000)

s
e
c
o

n
d

s

Bubble

Quick

Merge

Heap

Empirical Comparison 4
Reverse Ordered Numbers

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

n (x 1000)

s
e
c
o

n
d

s

Bubble

Quick

Merge

Heap

Empirical Comparison 5
Reverse Ordered Numbers

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8 9 10

n (x 1000)

s
e
c
o

n
d

s Quick

Merge

Heap

STL Sorts
• There are a number of sort routines available in the STL algorithm library, a

priority queue, which acts as a heap sort, plus some templates that have sorts
of their own.

• sort(thing.begin(), thing.end()) is a quicksort algorithm.
• stable_sort(thing.begin(), thing.end()) does a stable sort,

but I could not find definitive information on the algorithm used. However it is
described as being like the sort algorithm, in which case, the type of split or
partitioning routine will determine stability. But see Silicon Graphics site [1]
notes where it is made explicit that stable_sort uses merge sort.

• pqueue<something> is a heap: put data into it and then pull it out and it is
in order. [2]

• These are all very, very fast indeed: much faster than the ones any particular
individual can write.

• This is because they have been written, reviewed, optimised etc. by multiple
experts.

Empirical Comparison 6
STL Sort Comparisons

0

0.5

1

1.5

2

2.5

3

3.5

1 101 201 301 401 501 601 701 801 901

n (x 1000)

s
e
c
o

n
d

s sort

stable_sort

pqueue

Less Than Operator

• Note that these sorts require that a less than
operator (<) be available for the ‘things’ being
sorted.

• Therefore if you are sorting your own objects,
you must overload a less than operator within
the class to which they belong.

• To overload a < operator for a Circle class: [1]

bool Circle::operator < (const Circle &other)

{

return (m_radius < other.m_radius);

}

Readings

• Textbook, chapter Standard Template Library,
section on Algorithms.

